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To extend electrospray thruster lifetime and improve performance, we must understand the
relationship between particle emission conditions and the resulting evolved plume. To this end,
we apply machine learning algorithms to simulated electrospray particle data to investigate
correlations between particle properties at emission and further downstream. The strength of
predictive ability and correlation rankings with emission properties are presented for final plume
angle, among other final properties, and discussed in relation to the physical forces governing
electrospray plume evolution. Illuminated correlations between particle properties inform
diagnostic design by determining which properties offer the most insight towards predicting
other properties.

Nomenclature
Subscripts
𝐴 Applied electric field
𝐶 Coulomb
𝑓 Final
𝐼 Inertial
𝑖 Initial/Emission
𝐼𝑚 Image charge
𝑟 Radial
𝑥 Lateral, x component
𝑦 Lateral, y component
𝑧 Axial
Symbols
𝜖0 Permittivity of vacuum [F/m]
𝑝 Predicted value
𝜆 Breakup wavelength [m]
𝜙 Potential [V]
𝜌 Density [kg/𝑚3]
r Separation radius [m]
v Velocity [m/s]
x Position [m]
𝜃 Plume angle [deg]
𝐴𝑁𝑅𝑀𝑆𝐸 Absolute normalized root mean squared error
𝐶𝐷 Coefficient of drag
𝑑 Diameter [m]
𝐸 Electric field [V/m]
𝐹 Force [N]
𝑙 Distance from jet tip to reference point for emission velocity angle [m]
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𝑚 Mass [kg]
𝑁 Number of samples
𝑛 Number of droplets in plume
𝑝 True value
𝑞 Charge [C]
𝑅 Coefficient of determination
𝑡 Time [s]
𝑥 Position coordinate, x component [m]
𝑦 Position coordinate, y component [m]
𝑧 Position coordinate, z component [m]

I. Introduction
Electrosprays enable a diverse range of technologies, from mass spectrometry [1] to targeted drug delivery [2],

electrostatic purification [3–5], 3D printing [6, 7], and spacecraft propulsion [8, 9]. A wealth of electrospray data has
been generated through experimental observations and computational simulations such that machine learning (ML)
algorithms can now be employed to assist in electrospray research. The literature presents such ML applications to
experimental data, including the prediction of mean particle size[10] and estimations of ionization efficiency[11]. This
publication summarizes the first application of ML algorithms to simulated electrospray particle data. Three primary
benefits of utilizing machine learning with simulated electrospray particle data are identified:

1) ML regression models can form meta-models for the larger particle tracking models used to generate the training
data, thereby saving computational expense of additional runs of the larger model.

2) ML regression algorithms can predict unknown final (at the collector plate) particle properties given emission
properties, or emission properties and known final properties.

3) Random Forest models yield feature rankings which identify correlations between particle properties.
We additionally discuss the role of machine learning in optimizing electrospray diagnostic design by determining which
particle properties provide the most insight towards other properties. Finally, we invite the application of the presented
machine learning analysis to further simulated electrospray tracking data in the literature [12–16].

II. Methods
The particle data used in this study were obtained from University of California, Los Angeles (UCLA) Plasma,

Energy & Space Propulsion Laboratory (PESPL) Discrete Electrospray Lagrangian Interaction (DELI) Model plume
evolution simulations using experimental conditions from Gañan-Calvo et al. [12], for which case the DELI Model was
validated in a previous publication [17]. Each data sample includes particle mass 𝑚, charge 𝑞, 3D emission coordinates
(𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖), 3D emission velocity (𝑣𝑥𝑖 , 𝑣𝑦𝑖 , 𝑣𝑧𝑖), final positional plume angle 𝜃 𝑓 , 3D final velocity (𝑣𝑥 𝑓 , 𝑣𝑦 𝑓

, 𝑣𝑧 𝑓 ), and
final potential 𝜙 𝑓 . All properties are direct outputs of DELI simulations with the exceptions of plume angle:

𝜃 𝑓 = arctan
(√︃𝑥 𝑓

2 + 𝑦 𝑓
2

𝑧 𝑓

)
, (1)

and final potential:

𝜙 𝑓 =

1
2𝑚 |vf |2

𝑞
, (2)

where 3D final coordinates (𝑥 𝑓 , 𝑦 𝑓 , 𝑧 𝑓 ) are direct simulation outputs. Simulated axial emission coordinate 𝑧𝑖 was
constant such that it is not included in the feature set for machine learning studies. DELI Model simulations did not
include particle breakup[18–21] such that particle mass and charge are unchanged from emission at the downstream
collector plate. Particles were advanced with the equation of motion:

𝑚
𝑑2x
𝑑𝑡2

= 𝑞(𝐸𝐴 + 𝐸𝐶 − 𝐸𝐼 ) − 𝐹𝐷 = 𝑞𝐸𝐴 + 𝑞
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− 𝑞2
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|rI |3
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𝜋

8
𝜌𝑑2v|v|, (3)

where 𝐸𝐴 is the applied electric field, 𝐸𝐶 is the Coulomb electric field generated by the charged plume particles, 𝐸𝐼 is
the electric field created by image charges induced in the collector plate, 𝐹𝐷 is the drag force, 𝜖0 is the permittivity of
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Fig. 1 Emission velocity vector direction is the angle between particle emission position and a reference point in
the jet distance 𝑙 upstream from the jet tip, where 𝑙 varies from one mean particle radius to one mean breakup
wavelength. An example emission velocity vector is shown for 𝑙 = 𝜆[26].

vacuum, 𝑛 is the total number of particles in the plume, ri is the separation vector between particles (rI is the separation
vector between a particle and its image charge in the collector plate), 𝐶𝐷 is the coefficient of drag, 𝜌 is the density of the
surrounding fluid, 𝑑 is particle diameter, and v is particle velocity.

Particle emission has been experimentally observed to occur at an angle tilted from the vertical axis[22–24], such
that particles have radial components to their velocity vectors. This observed tilt is contrasts with the theoretical ideal
electrospray behavior in which droplets are emitted with strictly axial velocity. Initial machine learning investigations
displayed a correlation between the range of simulated particle emission velocity angles and the accuracy of machine
learning regressions on particle data. To further investigate the influence of velocity emission angle on electrospray
particle data machine learning regressions, we analyzed multiple cases of particle data which fall into two categories:

1) Strictly axial emission velocity, and
2) Non-zero radial emission velocity.

For the cases with a radial component to emission velocity, Figure 1 displays the means of determining emission velocity
angle, set equal to emission positional angle:

tan
( 𝑣𝑟 𝑖
𝑣𝑧𝑖

)
= tan

( 𝑟𝑖
𝑙

)
, (4)

where 𝑟𝑖 is the emission radial coordinate, 𝑣𝑟 𝑖 is the emission radial velocity component, and 𝑙 is the distance between
the jet tip from which particles are emitted and the upstream reference point for calculating velocity emission angle.
This distance was varied from one mean particle radius 𝑙 = 𝑑/2 to two mean jet breakup wavelengths 𝑙 = 2𝜆, where
mean breakup wavelength 𝜆 = 4.5𝑑 [12, 25]. Data sets for each velocity angle emission simulation case included 35,000
unique particle trajectory data samples.

Six different ML models were applied to the Lagrangian electrospray particle data: Python package scikit-learn
library (v1.1.2)[27] Random Forest (RF), Support Vector Regression (SVR), k-Nearest Neighbor(kNN), and Multilayer
Perceptron (MLP) models; the py-xgboost library (v1.6.2)[28] Extreme Gradient Boosting (XGBoost) model; and the
lightgbm library (v3.3.2)[29] Light Gradient Boosting Machine (LGBM) model. Particle trajectory data were first
filtered for uniqueness, then randomly shuffled in order using the scikit-learn shuffle function, and finally scaled using
the scikit-learn StandardScaler function to fit a standard scaler to the training feature data and apply it to the testing
feature data. The scikit-learn train_test_split function was used to reserve 80% of the particle dynamics data for training
the machine learning models, and the remaining 20% for testing.

Model performance was analyzed using the coefficient of determination (𝑅2) and the absolute-normalized root mean
squared error (𝐴𝑁𝑅𝑀𝑆𝐸):

𝑅2 =

√√∑𝑁
𝑖=1 (𝑝𝑖 − 𝑝𝑖)2∑𝑁
𝑖=1 (𝑝𝑖 − 𝑝𝑖)2

, (5)
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𝐴𝑁𝑅𝑀𝑆𝐸 =
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𝑖=1 (𝑝𝑖−𝑝𝑖 )2

𝑁

|𝑝𝑖 |
, (6)

where 𝑁 is the number of samples, 𝑝𝑖 is the true value of the variable being predicted, 𝑝𝑖 is the value predicted by
an ML model, and 𝑝𝑖 is the mean of the true values. Hyperparameter tuning was conducted on all machine learning
models to optimize coefficients of determination through 5-fold cross validation.

III. Results and Discussion
Our machine learning analysis was informed by an understanding of the physical forces governing electrospray

evolution. The applied electrostatic force dominates axial droplet motion[30], whereas Coulomb interactions between
particles are the primary radial expansion force on plume particles[30, 31], especially in the region near emission[32].
The positional displacement resulting from applied electrostatic acceleration has a linear relationship with particle mass
and charge:

Δ #  »𝒙𝑬 =
𝑞

𝑚

∫ ∫
𝐸𝐴𝑑𝑡

2, (7)

whereas Coulomb displacement,

Δ # »𝒙𝑪 =
𝑞

𝑚4𝜋𝜖0

∫ ∫ 𝑛∑︁
𝑖=1

𝑞𝑖𝑟𝑖

|ri |3
𝑑𝑡2, (8)

is nonlinear and heavily dependent on stochastic interactions with near-neighbor (low separation radius |𝑟𝑖 |) particles.
Inertia also contributes linearly to particle displacement:

Δ # »𝒙𝑰 =
#»𝒗𝒊 𝑡, (9)

where −→𝑣𝑖 is emission velocity. Therefore, when particles are emitted with non-zero radial velocity, inertia contributes a
linear component to particle radial motion which is otherwise dominated by nonlinear Coulomb interactions. Wider
emission velocity angles ranges, which correspond to smaller distances 𝑙 between the jet tip and the upstream reference
point for velocity emission angle in Fig. 1, contribute stronger radial inertia to droplet trajectories and thereby linearize
radial particle dynamics. A comparison of the pathlines of 30 particles from the strictly axial and the widest angle range
emission velocity cases is presented in Fig. 2. The linearization of particle radial displacement due to inertia is clearly
visible in the non-zero radial emission velocity case (red pathlines). Likewise, the process of Coulomb interaction
driven particle radial displacement is visible in the strictly axial emission case (blue pathlines): particles are displaced
from the axis of emission at varying distances downstream of emission in a non-linear manner following stochastic
interactions with neighboring particles.

We utilized the correlative and predictive power of the six machine learning algorithms presented in Sec. II to
predict final particle properties (𝜃 𝑓 , 𝑣𝑥 𝑓 , 𝑣𝑦 𝑓

, 𝑣𝑧 𝑓 , 𝜙 𝑓 ) from emission particle properties (𝑚, 𝑞, 𝑥𝑖 , 𝑦𝑖). The literature
lacks a known closed-form equation relating particle properties at emission and downstream of emission, yet includes a
surplus of simulated electrospray particle trajectory data, creating an ideal environment for the application of machine
learning regression algorithms to this data. Fig. 3 presents 𝑅2 scores for the prediction of each final particle property
using emission particle properties as input features for the strictly axial and widest angle range emission velocity cases.
The performance metric results are presented with bar color corresponding to predictive model, such that the range of
performance can be seen among the six ML models.

In the solely axial emission velocity case, no algorithms predict final particle properties reliably with all coefficients
of determination below 0.7. In contrast, there is significant correlation between emission and final particle properties in
the non-zero radial velocity emission case. All models predict the final lateral velocity components with 𝑅2 ≥ 0.79 (and
𝐴𝑁𝑅𝑀𝑆𝐸 ≤ 0.3) and final angle with 𝑅2 ≥ 0.77 (and 𝐴𝑁𝑅𝑀𝑆𝐸 ≤ 0.25). Coefficients of determination exceeding
0.75 are comparable with the higher 𝑅2 scores from other machine learning studies of electrosprays [10, 11]. The ML
models thereby have potential to serve as meta-models for the larger Lagrangian model in yielding final angle and final
lateral velocity components given particle emission properties for the widest angle range velocity emission case. Our
conclusions on displacement linearity from the governing force analysis support these differences between machine
learning predictive capabilities between the velocity emission angles cases. In the non-zero radial emission velocity
case, particle dynamics have a significant linear component from inertia which allows ML models to better correlate
final particle properties with emission properties. In the strictly axial emission velocity case, the dominance of nonlinear
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Fig. 2 Pathlines are shown for every other of 60 emitted particles over a 30 µ sec period for the solely axial
emission velocity (red) and the widest angle emission velocity (blue) cases[26].

Coulomb forces on particle trajectories preclude ML models from predicting final particle properties exclusively from
emission properties.

Final particle angle is a key property of interest for electrospray thruster lifetime due to propellant overspray failure
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Fig. 3 Coefficients of determination for the prediction of each final particle property given all emission particle
properties for the (a) strictly axial emission velocity case and the (b) widest angle emission velocity case with
color corresponding to ML algorithm[26].

mechanisms[33, 34]. Therefore, we further analyzed correlations between emission particle properties and final angle
identified by Random Forest (RF) algorithm feature rankings for both emission velocity cases, presented in Fig. 4.
The fits of prediction of final angle for all six machine learning models are showcased in the inset plot of Fig. 4. The
feature rankings for the solely axial emission velocity case exclude velocity components 𝑣𝑥𝑖 , 𝑣𝑦𝑖 , and 𝑣𝑧𝑖 because
they are constants. Although final angle cannot be reliably predicted from emission properties for the solely axial
emission velocity case due to the non-linear nature of particle trajectories, RF feature rankings enforce the narrative of
plume expansion dominated by charge-dependent Coulomb collisions [12, 15, 17, 35] by revealing charge to be the
dominant feature for predicting final angle. In the non-zero radial emission velocity case, RF feature rankings support
the dominance of inertia by revealing emission lateral velocity components to be the dominant features for predicting
final positional angle.

Feature rankings for additional final particle properties also support established understandings of the physics of
plume evolution. Figures 5a and 5b display the feature rankings for final axial velocity and final potential, respectively,
given emission properties as input features. Particle charge has dominant feature importance for the prediction of
final axial velocity, stemming from the direct relationship between particle charge and the applied electrostatic force
dominating particle axial motion. Particle charge is also the dominant feature for predicting final potential, and mass
has secondary feature dominance, both of which are expected given the linear relationship between these properties and
potential given in Eq. 2.

For the nonlinear particle dynamics case following solely axial emission velocity, all six presented machine learning
models failed to predict final particle properties with statistically significant accuracy given only emission particle
properties as input features. However, when final particle angle 𝜃 𝑓 is added to the input feature list alongside emission
particle properties, stronger performance is achieved in predicting other final particle properties. Final axial velocity and
final potential were most reliably predicted from the final property set given only emission properties as shown in Fig.
3a. When also given final angle, these variables can be predicted with high coefficients of determination: 𝑅2 > 0.88 for
final axial velocity and 𝑅2 > 0.93 for final potential for all models. Therefore, these ML models can create a limited
meta-model for the full Lagrangian model to obtain final axial velocity and final potential given emission properties and
final angle. The improvement in predictive ability from adding final angle to the input feature set highlights a strong
correlation between final angle and other final particle dynamic properties. This trend has been observed experimentally,
with plume profile measurements demonstrating angular dependence[34]. Figures 5c and 5d give feature rankings
for final axial velocity and final potential, respectively, given emission properties and final angle as input features.
Final angle is significantly dominant over all other features for the prediction of final axial velocity, displaying a strong
correlation between final angle and final axial velocity. While charge remains dominant in the final potential feature
ranking, final angle has feature importance nearly equal to that of mass, to which potential has an indirect relationship
following Eq. 2.
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(a)

(b)

Fig. 4 Random Forest feature rankings for final angle regression for the (a) strictly axial emission velocity case
and the (b) widest angle emission velocity case with error bars showing the range among individual decision trees
in the forest. Inset plots showcase the fit for predicting final angle from all six ML models. Figure adapted from
[26].
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Fig. 5 Random Forest feature rankings for final axial velocity (a,c) and potential (b,d) given only emission
properties (a,b) and also given final angle (c,d) with error bars showing range among individual decision trees in
the forest[26].
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The correlations between particle properties identified by ML models have diagnostic design value because they
inform researchers of which particle properties yield the most insight towards other particle properties. In the presented
strictly axial emission velocity case, final angle was found to be strongly correlated with both final axial velocity and
final potential, such that for this case, an angular profile measurement from a simple Faraday probe[36, 37] could be
used with the machine learning meta-model to yield final axial velocity and final potential measurements typically
obtained by Time Of Flight and Retarding Potential Analyzer devices.

IV. Conclusion
We have demonstrated the utility of applying machine learning algorithms to simulated electrospray particle data

obtained by the UCLA DELI Model in a physics-informed framework. The methods we present are widely applicable to
data from other electrospray plume simulations[12–16].

We propose that the prediction accuracy of our methods can be further improved by:
1) increased volume of training data,
2) increased variance among particle emission property feature data sets so that emitted particles are more

distinguishable from one another, such as increased mass polydispersity or charge inhomogeneity,
3) expanding the feature set to include additional particle emission properties,
4) the improvement of Lagrangian particle tracking models to more closely match the physical reality of electrospray

plume evolution, such as including particle coalescence and breakup [38, 39] and secondary electron emission[40,
41].

To the first point, we note that there is a sparsity of simulated particle data with high final angle, which is also observed
experimentally, due to the relative lack of particle flux at high positional angles[34, 36]. This angular data bias leads to
higher prediction error by ML models for high-angle particles, which can be corrected with increased data sampling at
high angles. In addition, we recognize that non-linear charged particle dynamics is an active research area in machine
learning, including at the Joint Institute of Nuclear Research [42] and the Large Hadron Collider [43, 44]. Machine
learning predictions for electrospray particle dynamics will improve as a part of this growing nonlinear particle dynamics
machine learning community.

The UCLA PESPL is actively pursuing multiple electrospray plume evolution research endeavors utilizing the DELI
Model. The presented machine learning analysis compliments ongoing analytical research into plume divergence,
drawing on beam characterization metrics from the particle accelerator community[45, 46]. Force analysis on DELI
Model simulation data is also underway to determine a bounding spatial threshold beyond which simulated Coulomb
interactions may be mathematically approximated without sacrificing accuracy in the resulting plume evolution. All
research efforts share the objective of further illuminating the governing physics of electrospray plume evolution to
inform thruster designs which optimize lifetime and performance.
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