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Abstract
Porous ionic electrospray emitters have received significant interest for space propulsion 
due to their performance and operational simplicity. We have developed a diffusion equa-
tion for describing the transient flow response in a porous electrospray emitter, which 
allows for the prediction of the settling time for flow in the porous emitter. This equation 
accounts for both the change in liquid storage at exposed pores on the emitter with pres-
sure and viscous diffusion through Darcy’s law. Transient flow solutions are provided for 
the most common emitter topologies: pillar, cone, and wedge. Transient flow solutions 
describe the settling time and magnitude of current overshoot from porous electrosprays, 
while providing useful guidelines for reducing transient response time through emitter 
design. Comparing diffusion of pressure to the onset delay model for electrospray emis-
sion shows that diffusion is most relevant at higher voltages and when a porous reservoir is 
used. Accounting for multiple emission sites on the wedge geometry shows that emission 
sites settle in proportion to emission site spacing to the power − 1.74.

Article Highlights

•	 The transient response of porous electrosprays is affected by fluid storage in exposed 
pores.

•	 Pressure diffuses into a porous electrospray through depletion of fluid in exposed pores.
•	 Diffusion of pressure complements the existing onset delay model for porous electro-

sprays.
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1  Introduction

Electrospray emitters use a conductive liquid to produce an electrified meniscus from which 
charged droplets and/or ions are emitted. At the tip of the emitter, electrostatic stress and capil-
lary pressure equilibrate to form a cone-like meniscus from which charged species emit. The 
three major categories of electrospray emitters (capillary, externally wetted, and porous) are 
distinguished by how propellant flows from the fluid reservoir to the emission surface. Of 
these, porous electrospray emitters have been of significant interest due to their simplicity and 
high performance.

In all applications of electrospray propulsion, dynamic events are unavoidable. When used 
for precision control, electrospray thrusters are continuously varied to provide the required 
thrust on a spacecraft (Demmons et al. 2019). Electrospray thrusters have also been operated 
under pulse-width-modulated (PWM) control, in which changes in the operating condition of 
the device are rapid and drastic (Courtney et  al. 2018). Alternating polarity of emission is 
often implemented to increase device lifetime, which in turn can create a brief decrease in the 
applied electric field on the emission surface (Lozano and Martínez-Sánchez 2004). Each of 
these schemes results in time-dependent flow through the electrospray emitter. If the charge 
to mass ratio of emitted species has any dependence on flow to the emission sites, then time-
dependent flow through the emitter can negatively affect the polydispersive efficiency, plume 
divergence, performance, and lifetime (Courtney et al. 2015; Wright et al. 2018; Thuppul et al. 
2020). For these reasons, understanding the transient flow response of porous electrospray 
emitters is imperative to developing high-performance, long lifetime electrospray devices.

The objective of this effort is to develop mathematical expressions to describe the transient 
response of porous electrospray devices. The utility of predicting the transient response lies 
in the phenomenological description of transient settling and useful equations for reducing 
the transient settling time through informed emitter design. We have developed a fluid flow 
model for diffusion of pressure through a porous medium with exposed pores on nonemitting 
surfaces of the emitter. In Sect. 2 we will present the derivation of the governing equation 
for transient pressure diffusion in a porous medium from first principles. Then in Sect. 3 the 
governing equation will be applied to common porous electrospray emitter geometries. The 
presented theory is compared to the commonly used onset delay model in Sect. 5. Finally, the 
implications and challenges of the presented model are discussed in Sect. 6.

2 � Theory

2.1 � Steady‑State Flow

In a porous electrospray emitter, propellant flows through the emitter substrate to the emis-
sion surface. The viscous loss associated with flow through a porous medium is described by 
Darcy’s law:

where u is the fluid velocity, P is pressure, k is the porous permeability, and � is the 
fluid dynamic viscosity. This form of Darcy’s law is valid for Reynolds number Re < 1 , 
where inertial effects can be neglected (Bear 2013). The Reynolds number is described as 
Re = �ud∕� , where � is the fluid density, and d is the particle size in the porous medium.

(1)u = −
k

�
∇P,
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For boundary conditions, the reservoir pressure is the capillary pressure produced by 
a meniscus at a fully wetted pore upstream in the reservoir (Bear 2013; Hassanizadeh and 
Gray 1993) and the emission surface pressure is approximated by the Maxwell pressure 
supplied by the magnitude of the local primary extraction electric field, Ep (Smith 1986; 
Chen et al. 2006). The applied pressure difference from the fluid reservoir to emission site, 
ΔPapp , is:

where � is the fluid surface tension coefficient, Dres is the characteristic reservoir pore size, 
and �0 is the permittivity of free space. The electric field on the emitter surface has a linear 
relation to extraction voltage, which can be determined by computational simulation of the 
extraction geometry (Krpoun and Shea 2008; Wright and Wirz 2021) or through analytical 
evaluation of the extraction geometry (Smith 1986; Martinez-Sanchez and Lozano 2015). 
Equation 2 is undefined for cases where the electric pressure is less than the reservoir pres-
sure, e.g., no electric field. For these cases, there is insufficient electric field to produce net 
flow from the reservoir through the emitter, so ΔPapp = 0.

2.2 � Transient Flow

In this section, expressions for the stored volume of fluid in each exposed pore will be com-
bined with Darcy’s law to develop a diffusion equation for pressure in a porous medium 
with exposed pores. As previously described, the flow within porous electrosprays is the 
result of decrease in pressure from the reservoir to the emission surface. Conservation of 
momentum in the streamwise direction shows how pressure gradient causes flow through 
the emitter. Perpendicular to the flow, pressure enforces the meniscus shape in exposed 
pores. As the meniscus changes, the amount of storable liquid in the pore changes as well. 
This phenomenon has been described diagrammatically by Lozano and Martinez-Sanchez 
(2005) for flow through grooves of externally wetted emitters and by Courtney and Shea 
(2015) for porous emitters. The fluid volume associated with the change in storable liquid 
at each pore must eventually pass through the emission surface downstream. In this way, 
exposed pores closest to the emission surface deplete as the flow settles to its steady-state 
condition. A diagram of flow through the porous emitter and the behavior of mensici with 
pressure is shown in Fig. 1.

The curvature of the meniscus is found using the Young–Laplace equation, where the 
pressure drop across a meniscus, ΔPmen , is equal to the surface tension coefficient, � , multi-
plied by the mean curvature of the meniscus. We assume that the meniscus forms a spheri-
cal shape, so the mean curvature is twice the reciprocal of the radius of the meniscus, Rmen:

We assume the device is operating in vacuum, i.e., there is no ambient pressure; the pres-
sure drop across the meniscus can be replaced with the local pressure, P. For the case 
where there is no pressure difference across the meniscus, a flat surface is formed. As pres-
sure decreases, the meniscus recedes into the porous medium and increases in curvature, 
resulting in a decreased capacity for storing liquid in the porous medium. The lost storage 
capacity of surface pores is determined as a spherical cap formed by the meniscus. For a 

(2)ΔPapp =
4�

Dres

−
1

2
�0E

2
p
,

(3)ΔPmen =
2�

Rmen

.
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sufficiently smooth emitter surface, the bounds of the spherical meniscus are defined by the 
radius of a single-surface pore, Rpore . The volume of this spherical cap, V, and the depth 
that the meniscus has receded into its pore, h, are defined as:

Equations 3 through 5 reveal the effect of local pressure on the pore’s capacity for storing 
liquid, ΔVpore:

The ability for a pore to store liquid is shown as a function of pressure is shown in Fig. 2, 
including the linearized form presented in Equation 6. The linearized relationship is 91% 
accurate within 50% of the characteristic pressure and 98% accurate within 25% of the 
characteristic pressure for saturated pores in the emitter porous medium ( 2�∕Rpore ) (Wright 
and Wirz 2021).

A common choice for porous medium is P5-grade porous glass, which has a pore 
radius of 0.5 to 0.8 μ m (Courtney and Shea 2015; Natisin et al. 2020; Ma et al. 2021). 
As an example, the emitter from Courtney and Shea (Courtney and Shea 2015) is con-
sidered, for which the electric field at the emission surface has been estimated as the 
emitter voltage multiplied by 15.3 mm−1 (Wright and Wirz 2021). For EMI-BF4 in the 
emitter substrate, 5.7 kV is required to reach 25 % of the characteristic pressure of satu-
rated porous in the emitter. The emitter was operated up to a maximum of 2.5 kV, which 
shows that the device was operated well within the range of validity for the lineari-
zation used to produce Equation  6. Even if the emitter was fabricated from P4-grade 
porous glass (as with Ma et al. 2021), which has a pore radius of 5 to 8 μ m, the opera-
tional range still falls within the 91% accuracy threshold for the linearization. For these 

(4)V =
1

3
�h2(3Rmen − h),

(5)h = Rmen

⎛⎜⎜⎝
1 −

�
1 −

R2
pore

R2
men

�1∕2⎞⎟⎟⎠
≈

R2
pore

2Rmen

.

(6)ΔVpore =
�R4

pore
P

8�
.

Fig. 1   Flow in a porous electro-
spray emitter, with a magnified 
cross section of a wetted porous 
surface. The meniscus of the 
liquid recedes into the porous 
medium as pressure decreases 
due to viscous dissipation
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reasons, we consider the linearization to be generally applicable to the common imple-
mentation of porous electrospray emitters. For pressures approaching the characteris-
tic pressure of a pore, Equation 6 underestimates the change in volume with pressure, 
which both leads to underestimating transient settling time and loss of linearity with 
pressure.

The equation for continuity can be adjusted to account for the changing capacity for 
stored liquid volume in a differential element of known volume dV :

where t is time and ΔV  is the change in liquid capacity of an isobaric differential element 
due to the meniscus of exposed pores. The negative sign is adopted due to the convention 
in Eq. 6. Combined with Darcy’s law, Eq. 7 becomes:

Equation 8 is the governing equation for transient pressure in the porous domain that will 
be applied in this study, which states that the Laplacian of pressure is proportional to the 
change in the volume of liquid stored in a given differential element of the domain. Con-
sidering the change in stored liquid in the porous domain unfortunately causes Laplace’s 
equation for pressure only to be valid when considering the steady-state response.

The nondimensional change in liquid capacity in a differential element, ΔV∕dV  , can 
be expressed as a function of pressure through Eq. 6, the surface pore density npore , and 
the exposed surface area to volume ratio of a differential element:

where � is porosity. Equation 9 is used to convert Eq. 8 into a diffusion equation for pres-
sure in a porous medium with an exposed surface, where D is the diffusion coefficient for 
this flow:

(7)∇ ⋅ u = −
�

�t

ΔV

dV
.

(8)
k

�
∇2P =

�

�t

ΔV

dV
.

(9)
ΔV

dV
= ΔVporenpore

dA

dV
=

�R4
pore

P

8�

(
�

�R2
pore

)
dA

dV
.

Fig. 2   Volume of stored liquid in 
a pore as a function of pressure
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Diffusion equations have been previously derived to describe the evolution of pressure in 
porous media, relying upon properties such as fluid compressibility (Liang et al. 2001) or 
infiltration and pore deformation (Shapiro and Dinske 2009). Diffusion of pressure as pre-
sented in this section, and specifically in Eq. 10, is unique in its application and approach, 
but of course not the first to describe pressure diffusion in a porous medium. We justify the 
use of the term ‘pressure diffusion’ to describe the pressure response in the porous medium 
through the derivation of a diffusion governing equation to describe the process, specifi-
cally Eq. 10.

To estimate the diffusion coefficient for a porous emitter where the pore size and perme-
ability are unknown, permeability is approximated through the Carman–Kozeny equation 
(Bear 2013) and pore size is approximated from particle size and porosity, � . If the porous 
medium has roughly circular pores between spherical particles, then:

where Dp is the particle diameter. The diffusion coefficient can then be simplified as:

where Φ is a nondimensional parameter for particle sphericity (Kruczek 2014). Equa-
tion 12 shows that the diffusion coefficient can be reasonably estimated without perform-
ing pore size or permeability tests on a porous sample. Porosity can be measured from the 
mass of a porous sample with a known volume. The term dV

dA
 will depend on the geometry 

of the porous emitter. Regardless of geometry, pressure in the emitter domain settles over a 
timescale that is independent of change in pressure at the emission surface. As a result, the 
system response to a nondimensional pressure change at the emission surface can be char-
acterized to understand the system response to any pressure change.

The description for pressure diffusion presented in this section is an analytical model 
and thus dependent on the accuracy of the assumptions and mathematical descriptions. 
Producing a porous medium is an inherently random process, which differs greatly from 
the uniform and isotropic porous media described in this section. Additionally, the accu-
racy of solutions to the diffusion equation proposed in Eq.  10 relies upon the accuracy 
of the chosen isobaric differential elements. With these limitations in mind, the presented 
model is best used for developing a phenomenological understanding of transient settling 
and informing emitter design to reduce the transient response, rather than to produce an 
exact prediction of the transient settling. The challenges and limitations of the pressure dif-
fusion model will be further discussed in Sect. 6.

3 � Modeling Common Electrospray Geometries

In this section, three common porous emitter geometries will be considered: pillar, cone, 
and wedge. For the cone and wedge geometries, example results are shown for the fol-
lowing conditions: RI = 0.1 , RO = 1 , D0 = 2 , where RI is the inner radius of the emission 

(10)
�

�t
P = D∇2

P; D =
8�k

��R2
pore

dV

dA
.

(11)Rpore =
Dp

2

(
�

1 − �

)1∕2

(12)D = 0.178
Φ2��

�(1 − �)

dV

dA
.
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surface, RO is the radius of the base of the emitter, and D0 is a modified diffusion coefficient 
which has no spatial dependence. An instantaneous pressure jump from P = 0 throughout 
the emitter domain to P = 1 at the emission surface at time t = 0 is considered to determine 
the transient response, regardless of emitter geometry. Full derivations of flow solutions are 
omitted for brevity; we refer the reader to Wright (2022) more detailed derivations.

3.1 � Pillar Geometry

Pillar-shaped geometries are seldom used for porous electrospray emitters (Vasiljevich 
et al. 2008; Rojas-Herrera et al. 2017; Wright and Wirz 2021); however, the simplicity of 
the flow solution warrants analysis. The pillar emitter can be approximated as a semi-infi-
nite cylinder. To determine the pressure response within the porous substrate, it is assumed 
to be at a uniform pressure before a disturbance is introduced at the tip of the semi-infinite 
domain at t = 0 . The assumed geometry of the body and the differential element are shown 
in Fig. 3. Inside of the differential element, the fluid is assumed to be uniform pressure. 
The differential volume, dV  , and differential surface area, dA , are determined from the 
thickness of the differential element, dy . The ratio of these two quantities is necessary for 
determining the diffusion coefficient.

where Rcyl is the radius of the cylinder. Thus the diffusion coefficient for a semi-infinite 
cylinder geometry per Eq. 10 is solved as:

Diffusion of a property such as pressure into a semi-infinite medium is often solved using a 
similarity solution (Panton 2013). For a nondimensionalized pressure disturbance upon the 
emission surface at t = 0 such that P(y, t = 0) = 0 and P(y = 0, t > 0) = 1 , the solution for 
pressure is

(13)dV

dA
=

Rcyl

2
,

(14)Dcyl =
4�kRcyl

��R2
pore

.

Fig. 3   Geometry of a pillar emit-
ter, with the differential element 
used in transient porous flow 
analysis specified
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where � is a similarity variable. The pressure gradient at the tip is found by using the chain 
rule with Eq. 15 and the definition of the similarity variable �:

Flow rate through the emission surface decreases with time in proportion to the pressure 
gradient through Eq. 1. The similarity solution is no longer relevant when the pressure dif-
fuses into the porous medium at a distance L from the emitter tip, thus forming the charac-
teristic time, TC , for this emitter geometry:

For t < TC , flow is best described by the transient solution, while for t > TC , the flow is 
best described by the steady flow solution. The flow response for a pillar-shaped emitter 
sheds light onto the characteristics of flow solutions obtained through the presented dif-
fusion equation: flow through the emission surface decays nonlinearly and approaches the 
steady solution predicted through Darcy’s law. This response also matches with the physi-
cal interpretation of the pressure diffusion into the porous medium, where fluid must be 
exhausted from exposed pores on the emitter surface before reaching an equilibrium state. 
Fluid accumulation in exposed pores temporarily reduces the effective hydraulic resistance 
of the emitter until excess fluid is exhausted through the emission surface. Additionally, 
note that while the fluid flow is toward the emission surface, pressure diffuses away from 
the emission surface as exposed pores exhaust accumulated fluid.

3.2 � Cone Geometry

The cone geometry is the most widely adopted for use in porous electrospray emitters 
(Courtney et al. 2012; Ma et al. 2017; Liu et al. 2019; Natisin et  al. 2020; Antypas and 
Wang 2019; Petro et al. 2020. A significant advantage of the cone shape compared to the 
wedge emitter is that the additional radius of curvature results in a sharper emitter tip, 
allowing for device operation at lower voltages. High emitter densities of 100 s of emitters 
per  cm2 have been implemented to achieve high-throughput density (Natisin and Zamora 
2019; Huang et al. 2021a). When conventionally machined (Natisin et al. 2020) or electric 
discharge machined (Liu et al. 2019), the resulting emitter can be pyramid-shaped rather 
than cone-shaped; these two emitter shapes are sufficiently similar such that the two can be 
analyzed using the same flow geometry (Fig. 4).

The geometry for the cone emitter domain is shown in Fig. 4 with the chosen differen-
tial element. The diffusion coefficient for the cone geometry, Dc , is evaluated through ele-
ment geometry and Eq. 10.

(15)P = [1 − erf (�)]; � =
y

2
√
Dcylt

,

(16)
�P

�y
(0, t) =

1√
2�Dcylt

.

(17)TC =
L2

4D
=

L2��R2
pore

16�kRcyl

.

(18)Dc =
8�kr

��R2
pore

(
1 − cos(�c)

)
cot(�c) = D0,cr.
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For the cone geometry, the diffusion coefficient is no longer uniform over the domain of 
the emitter. For brevity, the diffusion coefficient for a cone, Dc , is replaced by D0,c , which 
has no spatial dependence. To solve for the pressure response in the domain of the porous 
emitter, we consider a nondimensionalized pressure change at the emission surface at t = 0 
such that P(r, t = 0) = 0 and P(RI , t > 0) = 1 . This transient heterogeneous problem is sim-
plified as the superposition of steady solution, Ps , and homogeneous transient solution, Pt 
(Haberman 1983):

Ps satisfies boundary conditions Ps(RO) = 0,Ps(RI) = 1 and Pt satisfies homogeneous 
boundary conditions Pt(RO, t) = Pt(RI , t) = 0 . The steady and homogeneous transient solu-
tions combine to form the solution for nonhomogeneous boundary conditions at RO and RI . 
The steady-state solution for pressure in the cone, Pc,s , is found through Eq. 10, where time 
derivatives can be neglected:

A separation of variables solution is assumed in order to solve for the homogeneous 
transient component, Pc,t . Constant pressure boundary conditions are considered at the 
upstream and downstream boundaries, i.e., Pc,t(RO, t) = Pc,t(RI , t) = 0 . The homogeneous 
transient component of pressure in the domain is:

 where J1 and Y1 are the Bessel functions of the first and second kind, respectively, both 
of order 1, and n refers to the nth value of � that satisfies the boundary conditions, and 
N is the number of modes considered. Valid values of �n satisfy the boundary conditions 
through the following equation.

(19)P(r, t) = Ps(r) + Pt(r, t).

(20)Pc,s(r) =
RI

RO − RI

(
RO

r
− 1

)
.

(21)

Pc,t(r, t) =

N�
n=1

2Cn

�
D0

�nr
e
−�nt

×

⎡⎢⎢⎢⎣
Y1

�
2

�
�nr

D0

�
−

Y1

�
2
�

�nRI

D0

�

J1

�
2
�

�nRI

D0

� J1

�
2

�
�nr

D0

�⎤⎥⎥⎥⎦

Fig. 4   Left, geometry of a cone 
emitter, with the differential 
element used in transient porous 
flow analysis specified
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The left-hand side of Eq. 22 is plotted in Fig. 5 with valid zeros.
The r-dependent terms in Eq.  21 are combined to find the bases for this equation 

R(�n, r) , shown in Fig. 5. Numerical projection of these bases onto each other shows that 
they are nonorthogonal, complicating the process for determining the proper values of Cn 
for approximating the steady solution. Coefficient values are determined by satisfying the 
initial condition P(r, t = 0) = 0 through Eq.  19. Values of Cn were determined through 
numerical optimization of the following equation, using seed values obtained through pro-
jecting Pc,s onto the basis functions:

The success of this numerical optimization can be seen in the good agreement with the 
equilibrium solution through the basis functions, as shown in Fig. 5. The transient homoge-
neous solution captures the salient features of Pc,t with some periodic oscillation.

To obtain the heterogeneous transient solution, the equilibrium solution (Eq.  20) and 
homogeneous transient solution (Eq. 21) are added per Eq. 19. The solution can then be 
multiplied by the applied pressure difference, per Eq. 2.

3.3 � Wedge Geometry

In this section, the wedge geometry of emitters will be considered. This geometry is less popu-
lar than the cone geometry, but has seen implementation in both research groups (Courtney 
and Shea 2015; Chen et al. 2020; Bretti 2020) and industry (Demmons et al. 2019). In con-
trast to cone-shaped emitters, wedge-shaped emitters have a linear extraction surface where 
the applied electric field is strong and ideally uniform. Numerous emission sites form on 
the emitter in this region, caused by electric field and hydraulic interactions (Courtney et al. 
2019a; Wright and Wirz 2021). In contrast to cone emitters, these emitters will operate at 

(22)
Y1

(
2
√

�RI

D0

)

J1

(
2
√

�RI

D0

) −
Y1

(
2
√

�RO

D0

)

J1

(
2
√

�RO

D0

) = 0.

(23)Pc,t(r, t = 0) = −Pc,s(r)

Fig. 5   Left, the left-hand side of Eq.  22, for RI = 0.1 , RO = 1 , and D0,c = 2 , with valid zeros indicated. 
Right, the first 5 modes of the transient solution for the primary flow, with magnitudes determined through 
the described optimization strategy. The analytical approximation of the steady flow through these transient 
bases and the steady analytical solution are shown as well



Transient Flow in Porous Electrosprays﻿	

1 3

a higher voltage due to only having one radius of curvature at the emission surface. On the 
other hand, only having curvature in one direction results in a narrow plume in the ridgewise 
direction of the wedge (Courtney et al. 2015; Liu et al. 2021). Additionally, the long-emission 
surface results in a tight collection of emission sites along the wedge without the need for 
emitter parallelization. For the wedge emitter, we consider flow in a cylindrical coordinate 
system. Because the governing equation is linear for this flow, the flow can be described by 
the superposition of a primary and secondary flow. The primary flow describes the net flow in 
the radial direction to the emission surface, while the secondary flow describes the local flow 
concentration to each emission site on the surface.

3.3.1 � Primary Flow

The analytical geometry for flow in the wedge emitter domain is shown in Fig. 6.
The diffusion coefficient from Eq. 10 is evaluated as:

As was the case for the cone emitter flow, the diffusion coefficient has an r-dependence, so 
Dw is replaced by D0,w for brevity.

The steady solution, Pw1,s for Pw1,s(RO) = 0 and Pw1,s(RI) = 1 is:

Constant pressure boundary conditions are considered at the upstream and downstream 
boundaries, i.e., P(RO, t) = 0 and P(RI , t) = 0 . To prevent a trivial solution, C1 is chosen 
such that R(RO) = R(RI) = 0 . As with the cone flow, this yields a criterion for selecting 
values for � that satisfy the boundary conditions of R:

(24)Dw =
4�kr�

��R2
pore

= D0,wr,

(25)Pw1,s(r) =
ln
(

RO

r

)

ln
(

RO

RI

) .

Fig. 6   Geometry for flow in a wedge emitter. The differential elements used for analyzing the primary and 
secondary flows are shown in the subfigures at left and right, respectively
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For the wedge primary flow, the homogeneous transient solution has a form of:

As with the solution for flow in the cone, the full solution is obtained by adding the tran-
sient homogeneous and steady solutions from Eqs. 27 and 25, respectively. The left-hand 
side of Eq. 26 and the bases of Eq. 27 are shown in Fig. 7.

3.3.2 � Secondary Flow

The flow to individual emission sites is considered as the secondary flow. The govern-
ing equations for transient and steady flow are linear, so solutions can be superposed to 
form valid solutions. For the case where the base of the wedge, RO , is much greater than 
the emission surface radius, RI , and the emission site spacing, dsite , Bessel I terms can be 
ignored in the steady solution (Wright and Wirz 2021). A sinusoidal pressure oscillation in 
z with an amplitude of 1 is assumed in order to develop an analytical approximation of the 
flow concentration into individual emission sites. The secondary flow can later be added to 
a matching primary flow from the previous section to enforce stagnation points in between 
each emission site.

For the transient secondary flow, the diffusion coefficient is the same as for the transient 
primary flow.

Assuming that the site spacing is smaller than RO , the steady-state pressure in the 
domain, Pw2,s , is (Wright and Wirz 2021):

(26)
Y0

(
2
√

�nRI
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)
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(
2
√

�nRI

D0

) −
Y0

(
2
√

�nRO

D0

)

J0

(
2
√

�nRO

D0

) = 0.

(27)Pw1,t(r, t) =

N�
n=1

2Cn

⎡
⎢⎢⎢⎣
Y0
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�
�nr

D0
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�
2
�

�nRI

D0

�

J0

�
2
�

�nRI

D0

� J0

�
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⎥⎥⎥⎦
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Fig. 7   Left, the left-hand side of Eq.  26, for RI = 0.1 , RO = 1 , and D0,w = 2 , with valid zeros indicated. 
Right, the first five modes of the transient solution for the primary flow, with magnitudes determined 
through projection of the steady flow solution. The analytical approximation of the steady flow through 
these transient bases and the steady analytical solution are shown as well
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where � is the wavenumber for the oscillating pressure condition at the emission surface 
and is equal to 2�∕dsite . A separation of variables approach was used to determine the tran-
sient pressure response in this domain:

where U is the confluent hypergeometric function of the second kind (Weisstein 2003a) and 
L is the Laguerre polynomial (Weisstein 2003b). Values of � satisfy the following equation:

Satisfying Eq. 30 appears to be a necessary but not sufficient criterion; valid flow solu-
tions with values for � that satisfied Eq. 30 were determined through inspection. Valid solu-
tions for � are shown in Fig. 8 with their associated bases from Eq. 29.

The added complexity due to inclusion of an additional independent flow parameter 
motivates simplification of the transient behavior prediction. As with the other flows dis-
cussed previously, the long-term behavior of the flow is described by the first eigenvalue, 
while higher eigenvalues describe successively shorter-term behavior. Understanding the 
first eigenvalue allows for understanding the envelope of transient settling for the flow. The 
secondary flow in a porous wedge is largely confined to the emission surface; as long as 
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Fig. 8   Left, the left-hand side of Eq. 30, for RI = 0.1 , RO = 1 , D0,w = 2 , and dsite = 0.5 , with valid zeros 
indicated. Note that a variable scale for the vertical axis is utilized to highlight interesting features of 
Eq.  30. Right, the first 5 modes of the transient solution for the secondary flow, with magnitudes deter-
mined through the described optimization strategy. The analytical approximation of the steady flow through 
these transient bases and the steady analytical solution are shown as well
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RI and dsite are significantly smaller than the base of the wedge RO , the base radius RO has 
negligible effect on the secondary flow. Approximate values for the first eigenvalue can be 
found by neglecting the second term in Eq. 30 through the argument that the flow is con-
fined to the emission surface. Dimensional analysis suggests a solution of the form:

where � is a nondimensional parameter capturing the combined effect of dsite and RI on � . 
Least squares fitting over a range of input parameters suggests a proportionality coefficient 
of 69.2 and m = 0.738 . The first eigenvalue of the wedge secondary flow for a variety of 
geometric parameters is shown in Fig. 9.

Because the secondary flow is confined to the region of the emitter near the emission 
surface, the time required for this flow to settle will generally be much shorter than that of 
the primary flow. When considering large changes to the pressure condition at the emis-
sion surface of an electrospray, the secondary flow settling should be considered when 
a detailed understanding of the transient response is required. However, emission sites 
can be unsteady even at a constant operating condition (Juraschek and Röllgen 1998). 
For capillary emitters, oscillations in the cone are coupled with the unsteadiness of the 
jet on the order of single kHz frequencies (Choi et al. 2008); in porous electrosprays, the 
porous medium may act as another mechanism for unsteady emission with lower frequen-
cies possible as a function of emission site spacing. Equation 31 predicts that settling time 
increases with site spacing to the power −1.738. In other words, higher frequency pulsating 
emission sites are expected when emitting with high emission site densities.

4 � Error Estimation

The analytical results from Sect. 3 are supported by a numerical solver, which uses the 
finite difference method with an explicit time step to predict the temporal response of 
pressure in the medium. The time step was chosen to ensure a Von Neumann stability 

(31)�1 ∝
D0,wR

m

I

d
m+1
site

≡ �,

Fig. 9   The first eigenvalue of 
the wedge secondary flow for 
D0,w = 2 and values of RI from 
0.1 to 0.25, RI from 5 to 10, and 
dsite from 0.1 to 0.3. Dimensional 
analysis and least squares fitting 
show good agreement with the 
numerically determined zeros 
with fit parameters of A = 69.2 
and m = 0.738 per Eq. 31
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parameter of less than 0.2 throughout the domain (Kajishima and Taira 2016). The error 
of each analytical solution, � , is estimated by comparing the analytical flow field to that 
which was produced by the numerical solver, normalized by the pressure integrated over 
the domain:

where Pd is the pressure obtained by the discretized method, Pa is the pressure obtained by 
analytical the analytical solution for the specified emitter geometry, x is the location from 
the discretized solver, and X is the number of points used in the discretized solver. Equa-
tion  32 was used to evaluate the accuracy of the analytical expressions for the transient 
pressure response of the cone, primary wedge, and secondary wedge flows.

The error in the transient pressure solutions for the cone and wedge domains is shown 
in Figs. 10, 11, and 12. Error decreases over time and with an increase in the number 
of evaluated modes. Due to the nonorthogonality of modes in the cone flow, increasing 
the number of modes does not necessarily decrease error over the entire time domain. 
For the secondary wedge flow, error is initially high and decreases sharply around 1∕�N . 
Analytical modes produce pressure oscillation throughout the spatial domain of the 
emitter, while the physical response is mostly confined to within dsite from RI , resulting 
in initially high error.

(32)�(t) =

�
X∑
x=1

�
Pd(x, t) − Pa(x, t)

�2

X∑
x=1

Pd(x, t)

,

Fig. 10   Error associated with analytical approximation of the transient flow in a porous cone, using up to 
the first six modes in Eq. 21
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5 � Comparison with Onset Delay Evaluation

A commonly used method of evaluating the time response of an electrospray is through 
onset delay characterization. Thompson and Prowett developed the onset delay model by 
considering viscous effects and the volume associated with a Taylor cone during emission 
(Thompson and Prewett 1984). The theory has been applied to experimental results from 
externally wetted electrosprays (Lozano and Martínez-Sánchez 2005) and porous electro-
sprays using Darcy’s law to understand the effect of viscosity (Huang et al. 2021b).

Onset delay and diffusion of pressure, as presented in this study, are complementary 
models because the first describes only up to the time of emission, while the latter is 

Fig. 11   Error associated with analytical approximation of the transient primary flow in a porous wedge, 
using up to the first eight modes in Eq. 27

Fig. 12   Error associated with 
analytical approximation of the 
transient secondary flow in a 
porous wedge, using up to the 
first four modes in Eq. 29
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more suited to understanding the flow once emission is underway. On the other hand, 
they are similar models in that the flow can be considered settled once a sufficient 
volume of fluid has passed through the emitter. By comparing the propellant volume 
throughput required to reach steady state, the two models can be compared to see when 
each are relevant. For simplicity, the presented pressure diffusion is evaluated for a 
cylindrical, or pillar style, emitter.

To determine the onset delay, the volume of a Taylor cone at the emission surface 
must be evaluated. While an ideal Taylor cone takes an angle of 49.3° due to the balance 
of surface tension and electric pressure, fluid pressure can cause the shape to differ from 
this ideal geometry. When using a porous reservoir, fluid can be supplied to the emis-
sion sites at a strong negative pressure, causing a smaller Taylor cone with a concave 
cross section. This phenomenon is supported by empirical evidence (Mair 1997) and 
analytical models (de La Mora 2007; Coffman 2016; Coffman et al. 2019).

The volume of a Taylor cone with a strong restorative pressure is considered by 
assuming an ideal Taylor shape, but reducing the radius of the base of the emission 
site in response to the negative fluid pressure in the porous medium. The radius of the 
meniscus at the base is determined by finding the size at which the restorative pres-
sure, electric pressure, and surface tension effects are comparable. This assumption 
results in the onset cone volume shrinking with restorative pressure, which is consist-
ent with experimental measurements of cone volume decreasing with voltage (Huang 
et al. 2021b) and onset voltage increasing with restorative pressure (Courtney and Shea 
2015). Analytical modeling predicts that the radius of the base of the cone scales with 
�∕Pres (de La Mora 2007). The surface tension pressure is assumed to be equal to that of 
the restorative pressure at the analytical approximation for the base of the cone:

where Dres is the pore diameter of the porous reservoir and R� is a characteristic radius of 
the emission site at onset. We assume that there is one emission site at startup, generally 
the number of emission sites at startup is of order 1 (Peter et al. 2020; Krejci et al. 2017). 
The volume of a cone, VTC , can be determined from its base radius, RTC , and height, hTC:

where �TC is the ideal Taylor cone half angle of 49.3 ◦ . As previously discussed, the expres-
sion for cone volume shown in Eq. 35 is an approximation that is informed by experimen-
tal and analytical results. The approach presented above assumes that the capillary pressure 
plays the most significant role during onset, which contrasts with other models that assume 
cone size is a result of pore size (Whittaker et al. 2022) or sintered particle size (Ober et al. 
2010). For a given porous electrospray emitter, the three interpretations can lead to nearly 
an order of magnitude spread in the estimated cone size (Wright 2022). Due to the various 
models for cone volume, Eq. 35 is better used for evaluating phenomenological trends than 
for precise predictions.
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For the effect of pressure diffusion through the porous emitter, the change in volume 
can be evaluated by comparing the change in propellant volume from the initial condition 
to the steady-state emission condition. At startup, the pressure throughout the emitter is 
uniformly at the reservoir pressure. The stored liquid associated with diffusion of pressure, 
Vdiff , is evaluated over the surface of the emitter:

where the electric field imposed on the emission surface depends on the applied voltage 
difference and geometry of the porous emitter. Note that while it is tempting to estimate 
the settling time by combining the stored liquid volume per Eq.  36 and the steady-state 
flow rate from the steady-state pressure profile per Eq. 20, this method may not produce an 
accurate estimate of settling time. The steady-state flow rate is at best a crude estimate of 
the time-averaged transient flow rate.

To determine whether a given emitter is expected to operate in an onset delay domi-
nated mode or a diffusion dominated mode, a ratio of the two propellant volumes, V̂  , is 
formed by dividing Eq. 35 by Eq. 36:

Large values of V̂  (i.e., V̂ ≫ 1 ) indicate that much more propellant is stored in the Taylor 
cone at startup than will be wicked from surface pores away from the emission surface. 
More specifically, available propellant will be wicked away from surface pores before fill-
ing the Taylor cone volume required for startup. For this case, it is expected that onset 
delay will dominate the transient response of such an emitter. On the other hand, small 
values for V̂  indicate that the volume of a Taylor cone at startup will be filled well before 
available propellant in emitter surface pores has been depleted. For this case, it is expected 
that pressure diffusion will dominate the transient response.

Equation  37 is plotted in Fig.  13 for a pillar emitter with various porous reservoirs, 
EMI-Im as a working fluid, and emitter geometry and material properties per Wright and 
Wirz (2021): � = 0.038 Nm−1 , R = 0.5 mm, L = 5 mm, CE = 7.8 mm−1 , � = 0.23, and Rpore 
= 1.5 μ m. From this plot, four major observations are noted.

Firstly, onset delay is expected to dominate the transient behavior of an emitter near 
its startup voltage. For electrospray devices operating at emission voltages, Eq.  35 pre-
dicts large Taylor cone size, while the volume associated with porous diffusion is small. 
Secondly, increasing the applied voltage is expected to cause the transient behavior to be 
more dominated by diffusion. The volume throughput associated with diffusion of pressure 
increases with voltage, while the volume in a Taylor cone decreases. Thirdly, increasing the 
restorative pressure, as shown by decreasing reservoir pore size from P0 to P3, causes dif-
fusion to dominate the transient emitter response. The restorative pressure associated with 
small pore-size reservoirs is expected to have a strong effect on reducing the size of Taylor 
cones near startup. Finally, V̂  spans multiple orders of magnitude for the range of variables 
considered, showing that the conclusions are relevant given the accuracy described for 
Eq. 35. These observations are supported by empirical evidence of onset delay dominat-
ing the transient response for porous electrospray emitters used without a porous reservoir 
(Huang et al. 2021b) and negligible onset delay for electrospray emitters using a porous 
reservoir (Courtney et al. 2019b).
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This is not to say that pressure diffusion is a replacement for onset delay models when 
characterizing the transient response of porous electrospray emitters, but rather that there 
are regimes where one or the other dominate the transient response. Both perspectives are 
important for characterizing the transient response of electrospray emitters.

6 � Discussion

In this section, we aim to discuss and review the behavior of electrospray devices as related 
to the transient flow model presented in this manuscript. Additionally, the model has limi-
tations in its applicability and challenges that reduce its accuracy.

The six key conclusions regarding transient settling in porous emitters are as follows:

•	 The settling time can be reduced through informed emitter design, either through 
Eq. 17 or by finding the first root of Eqs. 22, 26, or 30. Increasing the diffusion coef-
ficient and decreasing the height of emitters will lead to shorter settling times. Surface 
tension and permeability decrease the transient settling time, while porosity, viscosity, 
and pore size increase settling time. Generally, short-and-wide geometries are advanta-
geous for decreasing settling time.

•	 Diffusion of pressure causes exponential decay in emission in response to volt-
age changes. Initially the response will be steeper-than-exponential decay due to the 
superposition of short- and long-wavelength modes. For the latter half of the emission 
response, short-wavelength modes will have decayed and the half-wavelength mode 
will dominate the emission response.

•	 Onset delay dominates the emitter response near the startup voltage. Operating at 
higher voltages increases the applied pressure difference on the emitter, increasing 
the flow through the emitter. Because the diffusion of pressure is linear, the settling 
time is expected to be independent of emitter voltage. As a result, diffusion of pressure 
becomes more important at higher voltages.

•	 Onset delay becomes negligible with increasing restorative pressure. As reservoir pore 
size decreases, the Taylor cone volume is expected to decrease, with the settling time 

Fig. 13   Comparing the volume 
required to fill a Taylor cone on 
the emission surface to the fluid 
volume stored in surface pores of 
the emitter as a function of emit-
ter voltage and reservoir porosity 
grade. The transient response 
of a porous emitter is predicted 
to be dominated by onset delay 
if this volume ratio is large, or 
dominated by pressure diffusion 
if this volume is small
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for diffusion of pressure again remaining constant. Diffusion becomes more important 
as smaller pore reservoirs are incorporated into the emitter assembly.

•	 Emission sites settle more quickly as they densify. As the site density increases, the 
region of the emitter influenced by the secondary flow to each emission site decreases, 
which in turn decreases the settling time. Pulsating emission sites are expected to 
increase in frequency with proximity to adjacent emission sites.

•	 The settling time can be approximated even if the details of the porous medium are 
unknown. If the porous medium is formed from a homogeneous mixture of sintered 
spherical particles, the porous permeability can be estimated through the Carman-
Kozeny equation. The permeability scales with the square of particle size, while pore 
size is proportional to particle size, so the particle size has negligible effect on the dif-
fusion coefficient.

This analysis describes the settling of flow in a porous medium, but does not investigate 
the flow within the Taylor cone. For a complete picture of the transient response of an 
electrospray emitter, it will be important to develop a deeper understanding of how the 
electric field manifests as a pressure well at each emission site. Coupling the emission site 
behavior with pressure and flow rate at the base of the Taylor cone is necessary to develop 
a complete understanding of the transient emission behavior. Furthermore, the quantitative 
comparison of pressure diffusion and onset delay models is hindered by the analytical rep-
resentation of the volume required for an emission site at onset. An analytical or empirical 
model describing the onset volume as a function of operational conditions would be valu-
able for quantitative comparison of the two identified transient emission models.

The model is limited by how well the differential elements represent constant pressure 
surfaces. Although the analysis assumes that the isobaric surfaces are constant-y surfaces 
for the pillar emitter or constant-r surfaces for the cone emitter and wedge primary flow, 
in reality these surfaces will bulge upstream. The additional flow associated with tran-
sient settling originates from fluid volume stored in surface pores, so streamlines will be 
deflected toward the emitter centerline or centerplane, while these pores deplete. Once the 
flow settles, flux from nonemitting surfaces associated with pore depletion vanishes and the 
constant potential surfaces match the differential elements for the transient flow. Because 
constant pressure surfaces approach the differential element geometry over time, the ele-
ments can be considered to reasonably approximate the flow. For a more accurate repre-
sentation of transient settling, an additional direction of flow would need to be considered 
for each of the presented geometries (e.g., flow in the r− and �−directions for the wedge 
primary flow) and the domain would need to be split into interior elements where Darcy’s 
law is enforced and exterior elements where Eq. 10 is enforced. Such an approach would 
lead to an improvement in the accuracy of analytical predictions of transient settling to the 
detriment of the simplicity of analytical relations produced by the effort, such as Eq. 26.

The menisci formed at the surface of the emitter are assumed to be constrained by sin-
gle pores. However, if the manufacturing process results in a rough emitter surface, this 
assumption may not hold. For example, conventional machining of glass occasionally pro-
duces visible chips in the emitter between the scale of the emitter and sintered particle 
(Natisin and Zamora 2019; Antypas and Wang 2019). If the roughness is of a scale less 
than the reservoir pore size, then menisci on the emitter surface may span multiple pores. 
In this case, the assumptions used to develop Eq. 4 may not hold, resulting in an underes-
timate of fluid stored in exposed pores and thus of transient settling time. As a result, the 
presented diffusion equation presented in this manuscript is most applicable to emitters 
with smooth nonemitting surfaces.
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While this study has focused on pressure diffusion within the emitter structure of an 
electrospray device, the entire flow system should be considered for a more comprehen-
sive understanding of transient device behavior. For example, pooling may occur between 
emitter structures when an open or pressurized reservoir is used (Chen et al. 2020), which 
may violate the assumptions used to derive Equation 6 or provide alternative flow paths. 
Although a porous reservoir can be used to introduce a Laplace pressure (Courtney and 
Shea 2015), which should prevent pooling, it introduces additional porous flow elements. 
Extending the presented analysis to further upstream elements, such as the porous reser-
voir, is suggested for future research. Transient settling has been observed over the scale 
of minutes and hours during device operation (Courtney et al. 2018); depletion of pores in 
the porous reservoir is suggested as a potential pathway to understanding long-scale flow 
settling behavior.

7 � Conclusion

In conclusion, a diffusion equation for pressure in porous electrospray devices has been 
developed from first principles for capillary action and porous flow. The diffusion equation 
has been applied to common emitter geometries and compared to the onset delay model 
for electrospray emission, showing how emitter design and operation affect which regime 
best describes the transient response of a porous emitter. As electrosprays are considered 
for more ambitious missions, the effects of transient flow on device lifetime, minimum 
impulse bit, and thrust noise spectra become more important to understand. We encourage 
future researchers to consider characterizing their porous materials and transient response 
in order to understand this feature of electrospray emitter operation.
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